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Abstract— DNA sequences has been for years a great concern 
for many research papers in Bio-Informatics. DNA sequence is 
a long string of characters specifying the nucleotides presented 
in the DNA. In bioinformatics the most well-known 
application is DNA sequence detection. Stored DNA sequence 
of various disease are retrieved and compared in order to 
check for the existence of a disease. To search for the pattern a 
well-established pattern matching algorithm is needed in order 
to get the result at the cost of sufficient amount of time. We’ve 
specifically referred the DNA sequences instead of any text 
strings and implemented the algorithms upon it. This paper 
evaluates four pattern matching algorithms’ performance and 
then proposes a new algorithm based upon Rabin Karp 
algorithm which ensures that character comparisons can be 
eliminated from Rabin Karp algorithm. These algorithms look 
for the specified pattern in a huge strand of DNA sequence. 
 

I. INTRODUCTION 
 Bioinformatics is an interdisciplinary research area that is the 
interface between the biological and computational sciences. The 
advent of electronic computers has arguably been the most 
revolutionary development in the history of Science and 
technology. The Ultimate goal of bioinformatics is to uncover the 
wealth of Biological information hidden in the mass of data and 
obtains a clearer insight into the fundamental biology of organisms. 
This new knowledge could have profound impacts on fields as 
varied as human health. Agriculture, the environment, energy and 
biotechnology. There are many other applications of 
bioinformatics, including predicting entire protein strands, 
learning how genes express themselves in various species, and 
building complex models of entire cells. As computing power 
increases and our databases of genetic and molecular information 
expand, the realm of bioinformatics is sure to grow and change 
drastically, allowing us to build models of incredible complexity 
and utility. 
When we know a particular sequence is the cause for a disease, the 
trace of the sequence in the DNA and the number of occurrences 
of the sequence defines the intensity of the disease. As the DNA is 
a large database, I propose String and Pattern matching algorithms 
to find out a particular sequence in the given DNA. This paper 
entirely focuses on a novel approach for detecting the patterns 
present in the gene database. Pattern matching is a mechanism to 
find out the exact location of a specified pattern, iff the pattern 
exists in the text.  
Before moving forward let us convey you about the structure of 
our paper. We’ve discussed the preliminaries needed to move 
forward in section 2, after that in section 3, disease caused by 
genetic factors has been revisited. In section 4 we discussed 
detection of disease using pattern matching and in section 5 the 

central ideas of this paper i.e. the pattern matching problem has 
been discussed. In subsequent sections i.e. in section 6, 7, 8 and 9, 
the Brute Force, Knuth-Morris-Pratt algorithm, Boyer Moore 
algorithm and Rabin Karp algorithm respectively has been 
described. In section 10 we’ve described our idea to improve the 
Rabin Karp algorithm and in section 11 the references used in this 
paper has been given. 

II. PRELIMINARIES 
Every human has his/her unique genes. Genes are made up of 
DNA. DNA is contained in each living cell of an organism, and it 
is the carrier of that organism’s genetic code. The genetic code is a 
set of Sequences which define what proteins to build within the 
organism. DNA consists of two strands, each being a string of four 
nitrogenous bases i.e. Adenine, Cytosine, Guanine and Thymine. 
In a computer we represent each nitrogen base with a single 
character: A for Adenine, G for Guanine and C for Cytosine and T 
for Thymine. Thymine (T) & Adenine (A) always come in pairs. 
Likewise, Guanine (G) & Cytosine (C) bases come together too. 
Using these codes an entire DNA can be coded based upon their 
nucleotides contained in a strand. For example: 
ATGCGATATGCATGCATGCATAT. The term DNA 
sequencing comprehends biochemical methods for determining 
the order of the nucleotide bases, adenine, guanine, cytosine, and 
thymine, in a DNA oligonucleotide [10]. Determining the DNA 
sequence is therefore useful in basic research studying 
fundamental biological processes, as well as in applied fields such 
as diagnostic or forensic research. 

The power and ease of using sequence information has 
however, made it the method of choice in modern bioinformatics 
analysis.[11] 

III.  DESEASE CAUSED BY GENETIC FACTORS 

An unhealthy symptoms or a specific illness in the body is termed 
as a disease. Disease   refers to any unnatural condition of an 
organism that affects normal functions. Diseasemay be referred to 
disabilities, disorders, syndromes, symptoms[9].Genes are the 
basic building blocks of heredity. They get passed from parent to 
child. They hold DNA, the instructions for making proteins. A 
genetic disease is any disease that is caused by an abnormality in 
an individual's genome. Some of the genetic disorders are 
inherited from the parents, while other genetic diseases are caused 
by mutations in a pre-existing gene or group of genes. 

IV. DETECTION OF DISEASE USING PATTERN MATCHING 
Over the last decade, genetic studies have identified numerous 
associations between chromosomal alleles in the human genome 
and important human diseases. Unfortunately, these extending 
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findings of casual variants in the region of DNA is not a straight 
forward task [8]. Causal variant identification typically involves 
searching through sizable regions of genomic DNA in the locality 
of disease-associated SNPs (single nucleotide 
Polymorphism).When we know a particular sequence is the cause 
for a disease, the trace of the sequence in the DNA and the number 
of occurrences of the sequence defines the intensity of the disease. 
As the DNA is a large database we need to go for efficient 
algorithms to find out a particular sequence in the given DNA.  

V. THE PATTERN MATCHING PROBLEM 
In pattern-matching problem on strings, we are given a text string 
T of length n and a pattern string P of length m, and want to find 
whether P is a substring of T. The meaning of a “match” is that 
there is a substring of text T starting at some index i that matches 
pattern P, so that T[i]=P[0], T[i+1]=P[1] ... T[i+m-1]=P[m-1] i.e. 
P= T[i..i+m-1]. Thus, the output from a pattern-matching 
algorithm is either an indication that the pattern P does not exist in 
T or the starting index in T of a substring matching P.[12] 

T =” abacaabaccabacabaabb “  

And the pattern string: 

P = "abacab". 

Then P is a substring of T. Namely, P = T [10...15]. There are 
various pattern-matching algorithms. Here we are to review four 
pattern matching algorithms and present an algorithm which is 
based upon Rabin-Karp algorithm but modified. These efficient 
algorithms can be used to trace the sequence of DNA in a huge 
gene database. Following are the four algorithms which are 
described below. 

• Brute-Force 
• Knuth-Morris –Pratt 
• Boyer-Moore 
• Rabin-Karp Algorithm 

 

VI.   BRUTE FORCE ALGORITHM 
It is also known as Naive String Matching algorithm. It has no pre-
processing phase, needs constant extra space. It always shifts the 
window by exactly one position to the right. It requires 2n 
expected text characters comparisons. It finds all valid shifts using 
a loop that checks the condition P[1....m]=T[s+1...s+m] for each of 
the n-m+1 possible values of s. The algorithm is as following: 
 
BRUTE_FORCE(T, P) 
n ← length[T ] 
m ← length[P] 
for s ← 0 to n − m 

do if P[1 . .m] = T [s + 1 . . s + m] 
then print “Pattern occurs with shift” s 

The Brute force string-matching procedure can be presented as 
shifting the pattern over the text, observing for which shifts all of 
the characters of the pattern equal the corresponding characters in 
the text, as illustrated in the following example. 

T=ANPANMAN 
P=MAN 

VI.I.     Complexity 
  Procedure BRUTE_FORCE takes time O(m) in best case i.e. 
when the pattern is found with in first m characters of text. And in 
the worst case the pattern will be matched total (m (n-m+1)). For 

example, consider the text string “AN” (a string of n a’s) and the 
pattern “AM”. For each of the (n−m+1) possible values of the shift 
s, the loop on line 4 to compare corresponding characters must 
execute m times to validate the shift. The worst-case running time 
is thus O(mn). The running time of BRUTE_FORCE is equal to 
its matching time, since there is no preprocessing.  
 
VI.II.   Drawbacks Of This Approach 
In O(mn) approach. if ‘m’ is the length of pattern ‘p’ and ‘n’ is the 
length of string ‘S’. Suppose S=ATGATAATGAAG and 
p=AATA. 

Figure 1: Brute Force comparison process 

j= 0 1 2 3 4 5 6 7 8 9 10 
S= A T G A T A A T G A G 
p= A T A A        
  A T A A       
   A T A A      
    A T A A     

 
In table 1 we’ve shown  when mismatch is detected for the first 
time in comparison of p[3] with S[3], pattern ‘p’ would be moved 
one position to the right and matching procedure resumes from 
here. Here the first comparison that would take place would be 
between p[0]=‘A’ and S[1]=‘T’. It should be noted here that S[1] 
had been previously involved in a comparison in 2nd iteration of 
the loop in this algorithm. This is a repetitive use of S[1] in 
another comparison. It is these repetitive comparisons that lead to 
the runtime of O(mn), which made it very slow. 

VII. KMP ALGORITHM 
We now present a linear-time string-matching algorithm due to 

Knuth, Morris, and Pratt. The basic idea behind the algorithm 
discovered by Knuth, Morris, and Pratt is this: when a mismatch is 
detected, our false start (which is the main drawback of Brute 
Force algorithm) consists of characters that we know in advance 
(since they’re in the pattern). Somehow we should be able to take 
advantage of this information instead of backing up the pointer 
over all those known characters 

 
VII.I The Prefix Function For A Pattern  

Fully skipping past the pattern on detecting a mismatch as 
described in the previous paragraph won’t work when the pattern 
could match itself at the point of the mismatch. To calculate the 
positions for the pattern as to how much a pattern need to shift 
itself so that the corresponding characters of text match with it. 
The table is called as next table or sometimes failure function 
(figure 2) for the pattern to be searched [14]. Consider another 
example of this next table. This next[j] be the character position in 
the pattern which should be checked next after such a mismatch, 
so that we can slide the pattern (j - next[j]) places relative to the 
text [6]. 
 

Figure 2: Next table 
j 1 2 3 4 5 6 7 8 9 10 

pattern A T G A T G A G A T 

next -1 0 0 -1 0 0 -1 4 -1 0 

 
Here next[j]= 0 means that we are to slide the pattern all the way 
past the current text character. Now we shall discuss how to pre-
compute this table; fortunately, the calculations are quite simple, 
and we will see that they require only O(m) steps. Now we 
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represent following the algorithm to calculate the next function or 
prefix function: 

next(p) //p signifies pattern 
int i=0, j=-1; 
next[i]=j; 
for(i=0;i<m;i++) 
{ 
 if(i==0)  
  next[i]=j;  
 else if(p[i]==p[j]) 
{ 
  next[i]=next[j]; 
 } 
 else 
 { 
  next[i]=j; 
 } 
 while (j>=0 && p[i]!=p[j]) 
                j=next[j]; 
 
                j++; 
} 
 

This program takes O(m) units of time, as next[t] in the 
innermost loop always shifts the upper copy of the pattern to the 
right, so it is performed a total of m times at most. A slightly 
different way to prove that the running time is bounded by a 
constant times m is to observe that the variable starts at 0 and it is 
increased, m- 1 times, by 1; furthermore its value remains 
nonnegative. Therefore the operation next[j], which always 
decreases j, can be performed at most m-1 times [6]. 

 
VII.II.   The Pattern Matching Algorithm 

The Knuth-Morris-Pratt matching algorithm is given in pseudo 
code below as the procedure KMP-MATCHER. KMP-
MATCHER calls the auxiliary procedure next() to compute next 
table. Below T & P signifies text & pattern respectively. 

 
KMP-MATCHER(T, P) 
n ← length[T] 
 m ← length[P] 
next=next(P) //array consisting of prefix values 
j ← 0   //Number of characters matched. 
 for k ← 1 to n //Scan the text from left to right. 
 do while j > 0 and P[j + 1] ≠ T [k] 
do j ← next[j]  //Next character does not match. 
if P[j + 1] = T [k ] 
 then j ← j + 1  //Next character matches. 
 if j = m   //Is all of P matched? 
 then print “Pattern occurs with shift” k– m 
 j ← next[j]  // Look for the next match. 
For convenience, let us assume that the input text is present in an 
array text T[ 1…n ], and that the pattern appears in pattern 
P[1…m]. We shall also assume that m > 0, i.e., that the pattern is 
nonempty. Let k and j be integer variables such that text T[k] 
denotes the current text character and pattern P[j] denotes the 
corresponding pattern character; thus, the pattern is essentially 
aligned with positions p + 1 through p + m of the text, where k =p 
+j [15]. 
 
VII.III. Complexity 
The KMP algorithm works by turning the patterns given into a 
machine, and then running the machine. It takes O(m) space and 
time complexity in pre-processing phase, and O(n+m) time 
complexity in searching phase (independent of the alphabet size). 
KMP is a linear time string matching algorithm. [6] 

VIII.  BOYER-MOORE ALGORITHM 
A significantly faster string searching method can be developed by 
scanning the pattern from right to left when trying to match it 
against the text. The Boyer-Moore algorithm (BM) was developed 
by R.S.Boyer and J.C.Moore in 1977 [7]. The Boyer Moore 
algorithm scans the characters of the pattern from right to left 
beginning with the rightmost one and performs the comparisons 
from right to left.  
 
VIII.I   Bad Character Rule 
To convey the idea of the bad character rule, let us suppose that 
the last (rightmost) character of pattern P is y and the character in 
text T it aligns with is x, x ≠ y. When mismatch occurs, we can 
safely shift P to the right so that the rightmost x in P is below the 
mismatched x in T, and this is possible if the rightmost position of 
character x exists in pattern P. This observation is formalized 
below [16]. 
For a particular alignment of pattern P against text T, the 
rightmost (n-i) characters of pattern P match their counterparts in 
text T, but the next character to the left, P(i), doesn’t matches with 
its counterpart, say in position k of T. The bad character rule says 
that P should be shifted right by Max[1,i - R(T(k))] places.  
The point of this shift rule is to shift P by more than one character 
when possible. In the below example, T(5) = t mismatches with 
P(3) and R(t) = 1 so P can be shifted right by two positions. After 
the shift, the comparison of P and T begins again at the right end 
of P. 
 

Figure 3: Compare from right 
 1         2        

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

T A C T C T T G A T G C T C T T A C 

P   A G A T G A T         

 
VIII.II.  Extended Bad Shift Rule 
When a mismatch occurs at position i of pattern P and the 
mismatched character in text T is x, then shift P to the right so that 
the closest x to the left of position i in P is below the mismatched 
x in T.  
 

VIII.III  The Good Suffix Rule 
Now we introduce another rule called the good suffix rule.  
Suppose for a given pattern P and text T, a substring t of text T 
matches a suffix of pattern P, but a mismatch occurs at the next 
comparison to the left. Then find, if it exists, the rightmost copy t’ 
of t in P such that t0 is not a suffix of P and the character to the 
left of t’ in P differs from the character to the left of t in P. Shift P 
to the right so that substring t0 in P is below substring t in T (see 
Figure 4). If t’ does not exist, then shift the left end of P. past the 
left end of t in T by the least amount so that a prefix of the shifted 
pattern matches a suffix of t in T. If no such shift is possible, then 
shift P n places to the right. If an occurrence of P is found, then 
shift P by the least amount so that a proper prefix of the shifted P 
matches a suffix of the occurrence of P in T. If no such shift is 
possible, then shift P by n places, i.e., shifting P past t in T. 
 

Figure 4: case when good suffix rule applies 
 0         1         

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 

T p r s t a b c t u b a b v q x r s t 

          ^         

P   q c a b d a B d a b       

   1 2 3 4 5 6 7 8 9 0       
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Good suffix shift rule, where character x of T mismatches with 
character y of P. Characters y and z of P are guaranteed to be 
distinct by the good suffix rule, so z has a chance of matching x. 
When the mismatch occurs at position 8 of P and position 10 of T, 
t = ab and t0 occurs in P starting at position 3. Hence P is shifted 
right by six places resulting in the following alignment.  

 
Figure 5: Shifting using good suffix rule 

 0         1         
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 
T p r s t a b c t u b a b v q x r s t 
          ^         
P         q c a b d a b a b  
         1 2 3 4 5 6 7 8 9  
 
Now in cases where we have matched the final m characters of 
pattern P before failing, we clearly wish to shift our attention 
down string by 1+m. So,  L(i) is the largest index j less than n such 
that Nj (P)≥|P[i..n]| (which is n - i + 1). L’(i) is the largest index j 
less than n such that Nj(P) = |P[i..n]| = (n - i + 1).Now The pre-
processing stage must also prepare for the case when L’(i) = 0 or 
when an occurrence of P is found. l’(i) equals the largest j ≤ 
|P[i..n]|, which is n-i+1, such that Nj (P) = j. So we can say that the 
required shift will be max (L(i),L’(i)). 
 

VIII.IV.  The complete Boyer-Moore algorithm:  
Given the pattern P, //pre-processing stage 
Compute L’(i) and l(i) for each position i of P, 
and compute R(x) for each character x ∈ ∑ 
//Search stage 
k := n; 
while k ≤ m do 
 begin 
 i := n; 
 h := k; 
 while i > 0 and P(i) = T(h) do 
  begin 
  i := i - 1; 
  h := h - 1; 
  end; 
 if i = 0 then 
 begin 
  report an occurrence of P in T 
ending at position k. 
  k := k + n – l’(2); 
 end 
 else 
  shift P (increase k) by the maximum 
amount determined by the 
  (extended) bad character rule and 
the good suffix rule. 
 end 

Note that although we have always talked about shifting P", and 
given rules to determine by how much P should be “shifted", there 
is no shifting in the actual implementation. Rather, the index k is 
increased to the point where the right end of P would be shifted". 
Hence, each act of shifting P takes constant time [17]. 
The good suffix rule in Boyer-Moore method has a worst-case 
running time of O(m) provided that the pattern does not appear in 
the text. This was first proved by Knuth, Morris and Pratt [6]. 
 
VIII.V.  Algorithm Complexity 
The BM algorithm is successful at achieving a sub linear running 
time in the average case, and if some special conditions occurred 
then also was capable of O(n+m) in the worst case. 
 

IX. RABIN-KARP ALGORITHM 
Previous three algorithms which we’ve seen is based upon string 
matching to see whether the pattern is matched with the text 
portion or not. RABIN KARP matcher is one of the most effective 
string matching algorithms. To find a numeric pattern ‘P’ from a 
given text ‘T’. It first divides the pattern with a predefined prime 
number ‘q’ to calculate the modular of the pattern P. Then it tests 
the first m characters (m=|P|) from text T to compute remainder of 
m characters from text T. If the remainder of the Pattern and the 
remainder of the text T are equal only then we compare the 
characters of the text portion with the pattern otherwise there is no 
need for the comparison [1]. We’ve to repeat the process for next 
set of characters from text for all the possible shifts which are 
from s=0 to nm (where n denotes the length of text and m denotes 
the length of P). So according to this two numbers n1 and n2 can 
only be equal if 

REM (n1/q) = REM (n2/q) [1] 
After division we will be having three cases:-  

• Case 1: Successful hit: - In this case if  
REM (n1) = REM(n2) and also characters of n1 matches 
with characters of n2. 

• Case 2: Spurious hit: - In this case  
REM (n1) = REM (n2) but characters of n1 are not equal 
to characters of n2. 

• Case 3: If REM (n1) is not equal to REM (n2), then no 
need to compare n1 and n2. 

For a given text T, pattern P and prime number q 
T=234567899797797976534356678886756456890975545343434
24545475655454 
P=667888 
q=11 
So to find out this pattern from the given text T we will take equal 
number of characters from text as in pattern and divide the value 
of these characters with predefined number q and also divide the 
pattern with the same predefined number q. Now compare their 
remainders to decide whether to compare the text with pattern or 
not. 
Rem (Text) =234567/11=3 
Rem (Pattern) =667888/11=1  
As both the remainders are not equal so there is no need to 
compare text with pattern. Now move on to set of characters of 
same length next from text and repeat the procedure. The Boyer 
Moore Algorithm goes as follows:  
Rabin_Karp_Matcher (T,P,d,q)  
{  
 n =Length (T) 
 m= Length (P) 
 t0=0 
 p=0 
 h=dm-1mod q 
 for i=1 to m 
 {  
  p = (d * p + P[i]) mod q 
  t0 =(d * t0 + T[i] ) mod q 
 } 
 for s =0 to n-m 
 {  
 if ts=p 
 { 

//comparison for spurious hits 
if P[1….m] = T[s+1…….s+m]  

then print pattern matches at shift ‘s’ 
} 
if s<= n-m 
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ts+1= (d(ts-h*T[s+1]) + T[s+1+m] ) mod q 
} 

} 
So the entire process can be written as follows: where Say P has 
length L and S has length n. One way to search for P in S: 

1. Hash P to get h(P).  
2. Iterate through all length L substrings of S, hashing 
those substrings and comparing to h(P).  
3. If a substring hash value does match h(P), do a string 
comparison on that substring and P, stopping if they do 
match and continuing if they do not. 

IX.I Numerical Example: 
Let’s step back from strings for a second. Say we have P and S be 
two integer arrays:  
P = [5; 0; 3; 3; 0]  
S = [4; 8; 5; 0; 3; 3; 0; 8]   
The length 5 substrings of S will be denoted as such: 
S0 = [4; 8; 5; 0; 3]    
S1 = [8; 5; 0; 3; 3]   
S2 = [5; 0; 3; 3; 0]   
And so on …   
We want to see if P ever appears in S using the three steps in the 
method above. Our hash function will be:  
h(k)= (k[0] * 104 + k[1] * 103 + k[2] * 102 + k[3] * 101 + k[4] * 
100)mod m  
Or in other words, we will take the length 5 array of integers and 
concatenate the integers into a 5 digit number, then take the 
number mod m. h(P) = 50330 mod m, h(S0) = 48503 mod m, and 
h(S1) = 85033 mod m. Note that with this hash function, we can 
use h(S0) to help calculate h(S1). We start with 48503, chop off 
the first digit to get 8503, multiply by 10 to get 85033, and then 
add the next digit to get 85033. More formally: 
h(Si+1) = [(h(Si) - (105 * first digit of Si)) * 10 + next digit after Si] 
mod m    
We can imagine a window sliding over all the substrings in S. 
Calculating the hash value of the next substring. In this numerical 
example, we looked at single digit integers and set our base b = 10 
so that we can interpret the arithmetic easier. To generalize for 
other base b and other substring length L, our hash function is 
h(k) = (k[0]bL-1 + k[1]bL-2 + k[2]bL-3.... k[L - 1]b0) mod m   
And calculating the next hash value can be done by: 
h(Si+1) = b(h(Si) – bL-1S[i]) + S[i + L] mod m   
Following is the example taken from [15]: 

Figure 6: 

 
The above figure[15] illustrates (a) A text string. A window of 
length 5 is shown shaded. The numerical value of the shaded 

number is computed modulo 13, yielding the value 7. (b) The 
same text string with values computed modulo 13 for each 
possible position of a length-5 window. Assuming the pattern P = 
31415, we look for windows whose value modulo 13 is 7, since 
31415 ≡ 7 (mod 13). The first, beginning at text position 7, is 
indeed an occurrence of the pattern, while the second, beginning at 
text position 13, is a spurious hit. (c) Computing the value for a 
window in constant time, given the value for the previous window. 
The first window has value 31415. Dropping the high-order digit 3, 
shifting left (multiplying by 10), and then adding in the low-order 
digit 2 gives us the new value 14152.  
 

X. IMPROVED IDEA: 
Theory As we can see, spurious hit is an extra burden on algorithm 
which increases its time complexity when we have to compare the 
text with pattern and won’t be able to get the pattern at that shift. 
So to avoid this extra matching, we’ve improved the Rabin Karp 
algorithm slightly, called IRK algorithm which says that along 
with remainders compare the quotients also. That is IRK checks 
whether, REM(n1/q)=REM(n2/q) and QUOTIENT (n1/q) = 
QUOTIENT (n2/q), where n1= pattern & n2=Text & q is the 
prime number. So, according to this technique along with the 
calculation of remainder, we will also find out the quotient and if 
both remainder and quotient of text matches with pattern then it is 
successful hit otherwise it is an unsuccessful hit or spurious hit 
and then we can remove the possibility of comparing the spurious 
hits. That means there is no extra computation of spurious hits if 
remainder and quotient are same then pattern found else pattern 
not found.  
Basically the algorithm is same as the original rabin karp 
algorithm, but with little modifications, which are shown in bold 
italic font. The algorithm goes as follows: 
IRK( T, P, d, q ) 
n ← length (T ) //text length 
m ← length ( P ) //pattern length 
h ← dm-1 mod q 
p ← 0 
t0 ← 0 
q_p ← 0 //quotient post hash calculation for pattern 
//quotient post hash calculation for portions of text of size m 
q_t ← 0 
for i ← 1 to m //Preprocessing 

do 
temp_p ← ( d*p + P[ i ] ) 
q_p ← temp_p / q 
p ← temp_p mod q  
temp_t ← ( d*t0 + T[ i ] )   
q_t ← temp mod q  
t0 ← temp mod q 

for s ← 0 to n – m // Matching 
//comparison only if quotient matches, removal of spurious hit 
 do if p = ts && q_p = q_t   
  then print “Pattern occurs with shift” s 
 if s < n – m  
//quotient, post hash calculation of next m characters in text.  

temp_t ← ( d * ( ts – T[ s + 1 ] * h ) + T[ s + m + 1 ] ) / 
q  

q_t  ← temp_t /q 
//subtracting LSB, Shifting and adding MSB then   
ts+1  ← ( d * ( ts – T[ s + 1 ] * h ) + T[ s + m + 1 ] )mod q 
ts= ts+1 
 

X.I. Comparison using Graphs: 
The results of our experiments are depicted in the graphs below. In 
the first graphs we have represented the performance of the 
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algorithms with a fixed text file size of 1MB. Y axis represents 
time in microseconds and X-axis represent the corresponding 
algorithms.  
Figure 7: comparison of algorithms with respect to 1 MB text file 

  
 
Now we compare only between Rabin Karp and IRK algorithms 
with the same text file size of 1 MB, in figure 8.  
Figure 8:  Comparison of Rabin Karp and IRK algorithms using 
file size 1MB. 
 

 
Rabin Karp scores the running time of 100750 microseconds and 
IRK adjusted the running time within 95500 microseconds, both 
upon same 1 MB text file. Below is the graph which depicts the 
comparison between Rk and IRK algorithm using a 2MB file size. 
Also we’ve compared the algorithm upon 2 MB text file size, 
whose readings are as follows 260750 for Rabin Karp and 175250 
for IRK algorithm.  
 

Figure 9: depicts the comparison of Rabin Karp and IRK 
algorithms using file size 2MB. 

 
 
 
X.II Example of IRK algorithm:  
T= ABBCABCA //text 
P= BCA  //pattern 
q=13(say) 
d=256 (for character) 
Hash(P)= (66 * 2562 + 67 * 2561 + 65) mod q  
p =  0   // hash value for pattern 
q_p = 334045 //quotient  

A B B C A B C A

 hash(ABB) = 0  // same hash q_t0 = 328965
 //but quotient different 

A B B C A B C A

 hash(BBC) = 1 
 q_t1 = 334026 

A B B C A B C A

hash(BCA) = 0 
q_t2 = 334045 

A B B C A B C A

hash(CAB) = 7 
q_t3 = 339047 // both matched 

A B B C A B C A 

hash(ABC) = 11 
q_t1 = 328984 

A B B C A B C A

hash(BCA) = 0 // hash matched 
q_t2 = 334045 // quotient matched 

Since the hash =0 and quotient = 334045 both matched. Only the 
pattern BCA is matched. And hash(ABB) = 0 and quotient = 
328965, which has not matched, ABB  is not compared. 
 
X.3 Time Complexity 
In Best case doesn’t differ much from the original Rabin Karp 
algorithm, but the in average case complexity can be improved 
significantly. Due to imposing of constraint of matching the 
quotient post hashing as well as the hash value of the text portion 
of size m , reduction in comparison has been seen. Which reduces 
the time complexity during worst case from O((n-m+1)m) to 
O(nm+1). This time complexity is hugely depends on the selected 
prime number, q. So selecting the right prime number gives this 
algorithm a satisfiable optimization in terms of worst case time 
complexity. 
 

XI. CONCLUSION AND FUTURE SCOPES 
This version of Rabin Karp algorithm can be used with Genetic 
Algorithm in order to search for a pattern in to huge text files of 
size >500MB.  Implementation using GA can produce an 
improved version of this algorithm for more sophisticated use and 
can make the search even faster by using the genetic operators 
such as selection, mutation, crossover etc. Our Future scope lies 
among this thinking that it could be possible for us to implement 
this IRK algorithm using GA for optimize the pattern analysis. 
Further analysis and improvement of this algorithm is welcome 
from any scholars. 
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